The Traffic Accident Reconstruction Origin -ARnews-


Re: Rotating Vehicles Drag Factor

Bill Houston (CARSINCORP@MSN.COM)
Sun, 9 Mar 1997 22:46:18 -0500 (EST)

Dear Mr. Borchers;

Rudolph Limpert addresses a method for determining speed from a spinning vehicle in his book, "Motor Vehicle Accident Reconstruction and Cause Analysis," 1989, The Michie Company, pgs 225-229. He references it as a speed calculation from spin marks. In short, he plots the path of the vehicle's center of mass and utilizes the heading angles to determine the disipated energy between several points along the vehicle's path to final rest. By using a straight line distance and 75% of the full drag factor, the calculated answer is within 2/10 MPH of his example. I have utilized his method in two additional cases where there was enough physical evidence to calculate a speed and have compared it with a 75% use of a full drag factor. In both instances, byusing a straight line distances and using 75% of full drag factor, the calculated speeds are within 1-2 MPH of each other. I don't know if that is the precision you require but it seems that you would be safe in using 70-75% of the full drag
factor.

I hope this information is of some value to you.
Bill Houston
CARSINCORP@MSN.COM


NOTE: You are reading in an archived session of ARnews. It is possible that this topic is still being discussed. To see if this topic is still active, or of there were any more recent posts on this topic, check later archives of ARnews.

If there is no current post, and you would like to add to this topic, link to the Current ARnews Discussion and begin a new thread. Be sure that if you are starting a new post that the thread title does not contain the abbreviation RE: Placing RE: at the beginning of a new post will confuse Hypermail and prevent others from answering your post in the future.

For example, to continue this discussion look for a thread titled

RotatF4AEVaHxZmTEy9hGIp/QcJigxPpUS0f1DM
alvpRkZDHuRLQm17nCNXsrbz2WJ8eW7uodlxfcmKXAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAA
2AI5AQAF/iAgjmRpnmiqrmzrvnAsz3Rt33iu73zv/8CgcEgsGo/IpHLJbDqf0Kh0Sq1ar9isdsvt
er/gsHhMLpvP6LR6zW673/C4fE6v2+/4vP7b2Pv/gIGCg4SFhoeIiYqLjI2Oj5CRkpOUlZaXmJma
m5ydnp+goaKjpKWmp6ipqo4Dra0irq4jr7MDsLG2KwS7vCO8vS27JL/Cw8AAxSLCxMcnzMm/LsTG
ySnPBMjYvtjP1NrZxtvA1dUm1+Db2dMq3eLfysfn6av0nrQAr/e0+rm1MOTvyjmL9w2atmIAw70o
h/AdCoPwIgYLSBGdxIYSLxbkVpFFwnQC2XXEqDHjwHoo/jXdI7EyX66Vt/51XHiwZriEH016nGnx
pDme1nguq4iTqEOTIX8qjJj0odGbT4OmnGoJZkx/Lk9YFbl0ItR5Rbs29Yn0aNd5Op2K5fgVZNQS
ObmiBTdWqdu2TM3OfTSB6tStLW3FQrFVqre6RaOV7Rl351q5cIGqdRetXdi7P5l5pdxLsy7Pl/Mq
Puu39CJ+gvvhS1248OTXZOluXBy3buTHhtUx1nt77tBmoWWL272ZNu+BwN8Kz226eaLAq1mmjm7C
dWy7TjUHH4pbmtDj24/7jgoRc168PZkHd2wxfPrezuMbgk7/peqr3iHH5m5++WKa3e3H1l6whUbS
ef3x/peWgOixh457Y9km34R38EMddRZKJ1OA2PlX3ocOSbjXgbmRJGJtA5bUnk0ZKfgeg/05+CCL
My5I4Y2H4HLLYPhhqONno3mmHkejwcNQMzbCZqR4lHkD4HjELRnZkeNIBqNoRV6ZZZDgMYnjl2CG
KeaYZJZp5plopqnmmmy26eabcMYp55x01nkFiocRVCVpU1YpJHLTtDMel+sAORuBJBRQQKKLiqCo
oiNAGmmjKEjqKKWPYkopAJaq0Omln3K6qZ2kQpJTlulB1JiSSV65Ynk1bjjjoZVK+uiluIqqqaeW
2tqor4yykGmwopYQaqnIKvIRiVH60qx+iA6pkInK/sn4G40nZDpsp5AOW2wK3na7qbjEgvvruYka
O2qy7B7iHpQdShiSiP8haK9/xcnGrLrFkjupruiaCyy3AR9bbr/rHtzuwoRw5yKemRUKbavxgqbc
tbaF5aIJ5PqLa8cJ/wsyscDyGqy46xrM8Mp6OJzis/Na2WG0BRYJoZdQumzyyCIv6nG2Pgf9ba4l
m3ty0bmyrLQfOstTL4esvijtq4FW+1lbqB78s7/e1gqq0P9+Ley4YCc99NJo33EOxDq9LK9Z9DZL
4sMvW5sikvz2fPSkISd9K8F8901ywGarnPbhbfgJc4izrXodxfARZyC2mx2It9YFE36r0aASParh
/uoCfjbipNfxblrrOJ5n5Hajh/FGEgcFq9SFa9or2SaHDTDHgvPOe6igly788MQXb/zxyCev/PLM
N+/889BHL/301Fdv/fXYZ6/99tx37/334Icv/vjkl2/++einr/767Lfv/vvwxy///HksQP/9+Oev
//789+///wAMoAAHCAkDGPCABsxBAmWAwAWmQXQ3CF4OICgECUZwczXomu4UtjsCbsKBCjTADBwI
whSU0Aqbw6ANLHjBXRGBhTRAWgyQpsEOes6DmjihDXTIAhDykAQ/lIK2VJjB3ukgXEacYBKLmK4Z
iK5oJeMWDjPhQxEiEIhXHMEBAUDCLa6gilrM/mIDRYjFEwbRBzyzIcpCNzRt1c6JKbSdC/2GQaEN
7FNdQ1nvYPiCrZUNYUOwwBTvUEIvLrCLIjikIhNJRhM2kotkRCQjTbDIMJ6RBzyLIhTPpbk/8vFj
YNPk4G4Isk7SkXBA09URUelHhC2RDAIY5BAK+UgUJBCMYHQkFk8gyTDu0pdHGBnghok731Gwj3b0
ZObeKEzcPfGVccTB7fbWM1TKUhK05OUYIbnLMQYxl94EpiUb6ARiUhOUg3PjMV3gq1Z+q53qTObZ
9IhEZHIQBhRs5Tqv6YhslgCXj7xlLb8YUCsWVJyTnII59cZQdDZ0dOy03TzluEG96TNkLNxn/kR9
18ZlVpSf/aylGRtpyEhWkpu6TGgXSWrShKLUpUV45g3D1s6OZo6iK7idR8Wmu2aqsqM0feU7ySZB
g9VQgzIEaUj/OVBICtSSLyWnCrY5zpc6taBeZOQldwDBPBZTlfC0qVjHVq4aQtSNgCxl6KaJTyIS
sVZDvCfw3qpU4W0VDZ+z5iE+Wde+FgECvDKrXwdL2MIa9rCITWwhrGMaxrJPql/I5RV+tKN+AIay
0PFHLX6U2RTgwj4a+qxmryLa1Yj2s5blbGlNKwsXwIRHKnAsDmCL2tS2dgWqpa1q9kFZwpS2s7JF
Xy+7kNW7KiFDvO3RaHlrH9umNrTPbUFg/p6L3N1OZ7QXym5ns4td2b4WtNjlrg+Sq6HyircEFqpu
eL1r3Qt9d36FBIMYmwqFy0JXK+2tLWnBGxPySte6ya3PfT3b3u4WGL33ce2B3Xuf4NJgu9vFR2wT
rN3rWoW9A74whR9L36tqkZuLzKpWQzzcb5Z0nJEEMVYHalz8uhgrFBZwVgQM4/MSWDoBzq+OJ2ze
Cvc4vP9FMHR1a1oEp/e2vu1xhIUMZB9npTobZnJ/rwtl+fGwkk8VaEtdqmWVHlSXT42qQVXs5TJ2
mAX2rXGVazxjHec2yklmM5Wjk9nV9gi1UmbtdJF8YyVHd7P48W9rrQPhBRv5z35mbZxx/vtbPv+4
fToEKJkl282DUpqSY450pjf9S5jKADVOjvGO2zzkPcdAxnN+snLvDOA0r/rFPE60cmm83xcU+tGy
LnJ9WgPnJsN2zfDTdKUn/eVwShqhmB7xiLeYZYNSVQe0prOoBzzl0/JX1UHW7GCi7Wofi3fJsO6z
gdfrZtXaesHgFre079ttdasZ2O+Lr6SbPWxfHtvTTIXqvDkdBG7Pedz+ZnCtFWxeWQQc3sBtsKEX
HWtWk5vaeWZ0rrkL54D7t8nw1naCHVw+SWKZ0ycW85iBqcgzr1TkxObyl2ugXh/B+uLYjjmVg5vw
mUcX5ujOOa7THXGcT7m8LSc4xRU+/u6C2zzQREf4tGfda/VB1sOTpLeIrxhmlY/clsVmNshZOnUR
z6C3un1zhn7+7nVjfLODLvd39/zeojcas72VOI43nnaj35bjio64nud+6ObevcB2JrLSzz7IFpsw
31Aw/NLwXgbG58DxuOan4rGeRcVa/vKYz7zmN8/5zmf+2TFQvNflIHZEM9fRnsfhpV0w+cmP4cga
f3jqQep6xIf+zGvo9pM1PHvaNxWXZFaxSEcv7Nwv/eft7v0Uqbpv4avc0yOtvRV0z5oNQ175/Kt6
yrXP/ZV3Og2g3rX1m16JCGDfL93fvqW9L/0vWPzfrz7/8q+ufqumH9lweP+qry///mBnXavqt2Uo
5U+2pwawN3BD13/zV3lOVX9dZmZMRUvtN308slp1FndzEgAKiAfDhwQTuIEgaAWgF4IkWIImeIIo
mIIquIL0EE4t8IF7ADc4gzqXw4Lms3raRAkSU4PI0RtxY4Pbg4ObsAyzgjM2ExBA6HTrB3UAGIFV
NFJ2QIQzczU0k4Qd92whB30sVWZVRQdZEzeJYYXpc2UdhoOUBoNdEDtgSBGUI4biQ4YphW9XxYAx
mByy8jRuGD5wiHXfh3+B4DYzuDh5SD57mIOddlJC6AZE6Dgx44OBOIjUU4hm9oSUuGJRSCjJARBH
+IOQ6EFo6AWByImdOIqkuAQV/lCKqJiKqriKrNiKaeJNJvd0OgCLbXB8keeKSjhVW/gDn8h6uHcD
YKdh/IeL2mNifTiLv+gDvRhaPtJ2w0iM1nNGkiVViXiM1OhsXHdLXTiHLJaMPGaLPAeNeviL4LSF
1YhsHkdiUDWA3reNX4d6tyaO51OJWneMwSeHyZZSUMiFz2eINhB38SiPhOiN5UhO56iF15iP7IiF
3viPSBaQAjmOL3Bv92hVcWh/AjiJfoiPPJBqSfeMEbk8LZaO61hyL7hyWbiRvXRSFvlpguFtfBeS
b9iQ3AiBJ7dVEjhymsaAssiTo3dqYcdnICmT7tOBRHCQughtRIl5IygETbmU/lAZlVI5lVRZlVZ5
lViZlVq5lVzZlV75lWAZlmI5lmRZlmZ5lmiZlmq5lmzZlm75lnAZl3I5l3SpBJoYOzWjJZnoJ3j5
OICyl62jOknCJXzSd5U1ds2IehHDhrSCL5zROlJiHKnzJ9mxJ1W4NkbRl4QRboTHGYzTHZOpmY+J
h31SGZmZNXmCLa/jHQZBmZHzOqpJJKKJBahCL4SZGUaiImyzExmjF/vymncjHklBLYW5XEcncLcI
H8QpOTJYhVGynPcCL1SYm5AjiJwYjHTnWKeiJ2DROKF4KIIZIBszndRgHr2pIqwZI08jilDALCfC
IjGjHVZTnI5IntLJIL/J/jrGQZ/U53J6dx2AyJyuUjECqp7PMiT5CZwNgmYveXpMxljLAp970ohP
optG+B2045eKQTf6MZ4igRHDSTns6QS7KS2NqDMG6pykCRW8ESFP8Tb4KTOvhmqcGTU3M6AKGqHo
CTUCkqDiWTcMKmGDR3g3A6LNWaF3WaEFmh8Rcy8uuqAfahNNUZuPGAUlmpcnyhYRuiVeEp6WqZ+3
4TLvGaOO+Z/ix3DMkTPz6aXdoKNF2JqoSaAeWjHyGacxmWfhaBkvqqUyaKdLIhBrmJqy2ZuEiaKt
khg8eBerCaYj2gRXSqZKYagvEp73KSNUY5rC4aeIojFAanehxmv5oqZQ/sqmriOhCzKbctqpBJqi
EyaUOic7eNI0sJOh2HEkd7ikoXoeHGqi35mpXeKXW+A0tPqnnXGkTmqsw6oOqKqgjiGruSqgc+pw
NJpxNnoxnUqqCQI7jdmdStoQMCqq7wiR1mE5bVoTHBqolUqe62GfGrGrWNqryko7VCoGj5qqkHqq
Msqj0vme8gk5FIoldqp/30Z+DIGrHoqtx+oOm7qtU6MbkBmdtgaTCPgacxOcAYquK9qwZToxr3Kg
OQqvuhGibVOl7YmhgYmsy1mvzGoYswMkudmyU2ih5ip3ZuefCVgc0AmdS4EYIyGiVkKp9ZKo9xmt
SeaRUKad1tqxK5Ks/mhhq906n2naIgpynrHCpCGLsvlKmyarroNasQo7mirqsU1KrE+arVEKmBk7
d36HmKcnWzuIJJjIl1QrtYDKmF9KqxZDn0PbtV4Cd79mYx9bqk2irELrmhjLnKiqpywqtF/LtJK5
oVtblzkiuZRbuZZ7uZibuZpbGogqt167sMAKKGqauL+6OoSbqJ3rrZC7FnYrnOWqhq17rhazrGfL
OnnrFqHJuJUFcG/3t/j1dwDZYMl5ummrt+sZu3zLt2Q7EXBqp4ZrspTZqHCwrpO6rf9qvBYquFHb
uCr7GNfbtIzTmGULppH5o7hqA7Ayr8MBsUsrdz7Xn+J2cYcGaIAL/pwMO7YfSp3xyqg/m7U66yBJ
up/pKgjUS6F1q6FdmrQIW58Z+q3sa8Cfib2g6xNOK8DsKwMimyqM+cDfwABjIbB4Sn5lB3TNFX90
2oYMDKurq8E4KrbgarWxAiKHSrJzUMDN+b34mi+yS5/XS7QOvLFZ+qzb28ORu8M4QMSsK6VY23D+
Kb8OJ3QuYXovYcInPMM8zKeCuKore686HKDlO76FIKtxq63VGrree5qFu8TEi71irCduTBN+KiRy
XMRorLojisSiuqgu/MTkZYF21qr0y1sOUHQwLKlafBKSyoit65lcu8Yd6sUjy6WI4Kwxi5o4nKxF
+sMDDLS+Wr2i/jsDYDzBx7u4WWu1xWq+hly8FzixaCfCkSdzwxu4YPykidy/fEK71Mur+lq8TIPF
l3ywyBq2Nzqs8dmXnEzJ/Ou4V4zAfxKrNCK9j3uE03LKhzykeXdeThykVZZwsFDI5tolrnnGzazG
KazLT3u6CwzNiliuCEyD7XyyeMGzLXzM7FzJKMyut0zO1gmeNBy4ezsceMxwqIFoxgmU3iZoJfyw
qJuvp+PJoizPrMrF6dzPcaA4v3y/QECuOxrKFrzH5Xm174y3DB3MozzNHd0nOAvJcgPMKiq/4BaO
Y4dzF0iwM7HQy2y2ouzQFPO/0/m5Jc0IqfvNd6vIZozSTlK8/orbnZJ8srk71K4bx326wqR5mwCr
iXD8ubdb1UKNM77Ldj7XqmtHd0rGm079yGb9qHdZ1oYStmBbotFL0WGpzps713Rd13Z916pIAXi9
13zd137914Ad2II92IRd2IZ92Iid2Iq92Izd2I792JAd2ZI92ZRdCBhQ2UhQem6HgSVwAAdAAp4N
2p9tAp4d2iNQ2qMNAKhd2itg2iIQ2qvt2q+d2qq92qdN26KN2rMt2rVt27Ot25gdCgdos23X2qbN
2r+N27e93LW928yNArIN28p9265d3aMt26RN28jd3Njt3N4d3JzQn04sW7F93Nc93ebN29E93c/N
3eyd3s29/tzdzdvUfd7x3dnsDd7hDY7TkXwnIN3uTd/0vd73XeDZrd7ord2fTeDz3d7ADeAHngIN
rt+PIN6KSd4LnuEF3t3wvdvlbdyx3dvbzeAKbuD4jeDuDdzJvd4TTuGMEH7lhqbQreEQ/t3OTeLb
rQIk/t8lvuMS3uM0nt8CbuIuXuE7Jmc1yuMIHuInvuEaTuRN7uEJHuI+PuMDztot3t5FXhVHTna8
xwJVHt+p3eEBbuMRLuVKLt9AruMl/ttQHuVbfgnDjdD/eeZlfuNPjuff3eJh7uB5TuZ2bt15PuQE
HueToNl8zNmEPuiCnt3WPeSBnuG+jeMjzuQiTubS7duX/q7gWW7oltfpnh7qoj7qpF7qpm7XuMzR
NyDXMpHqcL0D4Yy+gqLMRxy5GFzKt667oHwUuo7PsM7rnHwEwd7Tl7y9ORDrq97rUwCzZszq1SnB
GmvsTHDAss6xMTCmA3zOPMDstV7UhensRr3LSzDsZh2z0n7swN7ttP4Eoqjq1X6ru87Gr77t6f7u
QoDtz+7N9A4XSGCb837tPgvtRUDu0a615q7tadiieFO3Woovk7m/VVuZVMIk20ntRz24jgzxdrOJ
aSw7izuayL6vYdjIX0wklnrxWKwvU/I4TR2++PsbD4u4ObOx9k41pVmeq2KHcDvyf4oMXczxEJ2w
ME+i/r4Z8NPsy888szWC79x6tjJ8FhqdsBE/MRXcwHhJJVLPtMJq1SJ9u96600VfEmI6sgBKKxnc
9HfrKlzvtaks615v9hJqy+tb9ZbZmrlK96Ur9D5KBHa/m5zq0MWspB79tuYLugFN9REMwzNj8Qe/
xd07zFZsr7Wcz5Bx9gab91ms9zRPtpjvrtqbw//8wkxP9ueMzOv+65+/z8uR1OFuqdjavHbomVu9
1Zx/98AO1dBSzMHu9yMtuAucxym/ohNPEHmJ0xIf+x1t+uqu1bOf+YU/ytw+hQzf8Yoa/KevAw3t
zJ3c9GF6oVtcq/cs/Lbc7vV+7qE8t0zP+2edtGl6/rFIz6NsY/kNfcjaX/3X/64SLfc//ZyaSiBB
T6YgQBCASI4AWqIr27ovHJurWp/0nZ7iWPr9jad72WS44SwZUyGZTCVy5vyxilHZswms5lzZVvb7
nF69ufHZukxrdbsuMfhuU4XQ+3Uqz3etaCzbEc6c1haVESKXotKhCaFdGd+i5NFXotjcH2AhTyNe
IihoZ1oYpJuU4duhJRliJ5clWKAjWinkq83rYCysKe0ub6TbLRytbfFk0mhmMOXvkO+aqS5q9fRo
b3atHPUzVLCm909fXWro5Sz2MGNj9zLl+7dqtFm3uLqR++Pseb//P8CAAgcSLGjwIMKEoZoNZKjw
/tPDiBInUqxIMJzFjBo3cuzo8SNIiQ4DjkxYMiTKlCoRxlvp8iXMmDJn0qxp8ybOnDp38uzp8yfQ
oEKHEi1q9CjSpEqXMm3qtOPJNTvBLUMGkyE+QFaTLdza0B7IqDDECmzJUx1ZshzBsoID9unGt3HG
euUKdavauRabtcpXF6JfMxf3mPy7SxSyknmjLD6oeE9aw4BFElqXTVBjuADVbBqMkqpjyV8700Bn
2mDjzK4kc5bquSy/jyPDTEYtuqAmNX7OaF7LZtw8W7J0mTUrrYgvIaDpHgtOGBqQbcMn82Lrlpij
StdIYRdEVy/j7XaMg7c2Pmv2XrnE8/2djl6c/r6o5Nqdr73W8PPUzAEDdtsTgFv0Jlsg53knSzLy
yRMYdJXlotU14XlXyiIGKkMYfMJciGCFqoRXGR4UHigYiW1sOKFhuemWGD8KYlRiNZiB+N2JEp42
HTsgYuQif2S82NkfQUY3YFwFskijhncsFuCCrnEoDI8dwsikkwm26J6USI744yTKYaldlaTV+CSZ
1ZFzjpCKcHkglbWNCI9VayrJH4JqycekhURWVNWMb5ZR3HX0+ScgdPX5yecw3bHZJ6JyfoLoou+o
GOachkoiZDyAIpbpkeUZE9unDBZ6H3plEsoOYuW1xpWmagpYVaIpXrmgo3raliWMlqIq5pSn/rbp
KZTvmRpJW7rStlywuOZaqZ+L0vqXglWuqiGy7YmJp2hpophqFU2aSRqF5dSH1XU2cqaardf2aaIz
u/5aopdZZgiRj9zIWEiyJs7r7nPM2rcrsLudAu4+DvqKIV5G0rijsDEmCfCDAC+MMMKiUvmts3SY
o0eTlFp22L3pTjQpc9wQY89+pdZDZ47UxZlygPhNawwsbmZ1c3LEDXkoevqcWjIpOeqRs7Uhx2fy
0Mf45xfK7QgK8iDyOISWwisnTQ5yr8YbKoT6BLyvyGGLPfaZY5t9Ntppq712aE+z/Tbcccs9N911
23033nnrvTffffv9N+CBCz444YUbfjji/okrvjjjjTv+OOSRSz455ZVbfjnmmWu+Oeedc66A56GL
PjrppZt+Ouqpq7466627/jrsscs+O+2123477rnrvjvvvfv+O/DBCz888cUbfzzyyR9+APPNH4AC
8yxE77zzAFAfvfXXQ3/98ytg7z3120v//PfZZx+++eCfj34M2m9ffSLlt9+9+OVPT//47rs/P/zv
Ny++C+QHvv6tT30GhMH+/HfA8cnAfglEIPocuL7vSXCC3eMe+fSHvwoqb2wCPN8COcjAEOJPgS1w
IP3ud8H7veB/AHxh/DYoQ0QQEIIrzCADP7jAHUJwhyLk4QgNiD0Xpq+HLxziCltYwvyl/nCGNJRh
E4uIxBw6EYYSFKEOO0ikD8IPi0ssIhjlN8UgFtB8GATjAJMIxPmRMYYwVKL2rvhFIGaRjF5UYgOr
aEYX1lGOVMQjIMf4RiOakIXq8yMbSQhAMc5RiwPiIh/1CEk7SrKSU2ShIU8YyTYa4Yed1GMAcZjJ
PeYRkJ/0ISgHSUkqCtKUpDzkFycJS066sos4nCUuCRnGJgqwjo6Ey/4waUkick+Tq1SkMEkZTFGm
spRM9KUn/zjKUYbSlfwjoiKrmUgrMhONxszlK78pzj2y75SznOYtF1nOXa5Tlr9M1yTRSct1cvOY
9etmMqspz1D0sZG7LGU+7+nMcZ6R/oIljGY/VxnQWqYznPOcIT0HqsyG7pOgUHQnLd+pGVkSEKFq
pGQCK1g9RH6zo/7Upi5D+UCL/jOhKJXoHV/6UkTWkKUkfWgcP/rEEY4Uos2MaS9jeVKNMsWd2PQo
Ku35z/e1VKgDzGhKxzlTf96UmlJV5VSVusZ65hKbWb0pHX26VZYytapOzSYaMUrU3hg1pmTlKlyl
KM+2NnObS9WlS9WpV7uO9YCMfKhE0ydIr4rToHu9alOhas//GXavbr2rN9cqsmJCFoW2VKpIIyhW
WGpWq9c0aE3fytA0ptGrjAztMy+KRM2yL6TErKv/TstLW3YWnNCs7T1raFLdVhKw/pL9LXCDK9zh
Ere4xj0ucpOr3OUyt7nOfe7lLmvbDEZUpVEca0F9Wt3SMvaBsm1lXuXa2Lh+9qCvBSl3w7va1/Zv
pZrMKU9bu91nxtWtrOUtdNkGXuqWFbaOHS9MN9sP+xIWhdht7Bgfu00E35CES/QlU0GIVodCuLK9
7athOdheBoNTpvk1234tWNHRStec9axwVoWoU3au+L1JNKtikandj+qwwmeccF/xemGsppSialyv
QKUX2Rx/eIs6TeaIv7rJncr4H3d8bInh+GIBQ9auc12yiQHqY98OeMdVznKTOTtlayK2yJM9Mj6p
i9omW5WhOV3zVHFrYYfqs5vn/twyk4Ms0DZ7GI9JXiacQVrO754UkvC9M51j++ChmpmtaJ7okHUM
6Twn1h+W9bIfE7pQJPs3zHtuKF97mGTE2hjTVD01icW60AM3+mwhBmuWDRno+oIaFJlN74XhDORM
4znWWwYypa3sX7VKGsdlVqUcD91TMse41U25LoxRfOLuXYCwo+2wrasYYrRa269Xdq0bpyvecPta
scS+NnmPndZK67m7J4w0vJ39bDy/mtHxPWKpFWpv0Y5Yw3ld8moj3GVvH7bb6p7wkztNa8wWOorR
5iW+4y3vMy8awHzOo8UZnfD5MnypGjS3ts9rbCnLduR9TjGg2Wtwft9Q5aXG/jKFe31f0+574ja/
Oc5zrvOd87znPv850IMu9KETfXWXni2KB6B0paNg6UtfAdOhPoCmO33qGJcvhP2dcRF/sp2qXXRq
NS5yHgOgAAVggdlXYPa0o4DtbT97DNxedrjP3e1yl3vc6a72tbsA70X33IZVnOOoA4DphI/64a0u
9XP8Nd63FiyV1TtbgpM23SVtMNn5Xve3c37znYeB5ufeebbfXe+gD73oU7/3v48uwZH3J+FZEHvD
Wz32VGe8lwP5aBgL+7/3hjzIWdlitK+9+KoXvfGP33fNp730x/d7C0gP97tH3/Ss19zDFWv72y+e
9i/YfoCbHXhxR9PTMWc3/ryTPfzVN//szk8+9Pcu/edPv/5GeL/1iX99wL/+y7JX/P8FoNPBAPj1
HpElnPCtHNeh37cFGq/BW/shn95FYATmnQTS3+jln/6xn/v5XfztX+Vk31gl3tTNXgk+3fcBIKWV
H8s1lQLGlr79kZiJnTTVmv5R4AR24AVaIA5u4PzJAP7Z3waCIPYVE+8RIAB6X/edYArinmeh2/m1
khGBVvio37JJHE2tHP7dYP19YOoZn/O9nRd+3g6S4RgSIeSIINmZYOElIRO2oQsUYLGRHcL92nUt
2O71H4Cl2lNZIAdyofwBId3xXRjWnQZWXwYOofKhYQgK2GANVeLBIfdFtGIA8pN50WFSydVhpZ8e
Qlv/OdMj+lMY/qDdeWEpCiHenaH85SAZMiLnWCHS2VvVUd0Act8kziK5VV4umpAusiADqtnW+SIv
+mIhJh8G+uHnGePqhYIHol4ruiI0RqM0TiM1VqM1XiM2ZqPQIYA2dqM3fiM4hqM4jiM5lqM5hsQD
nKM6riM7tqM7viM8x